Periodic Acid Schiff (PAS) stain

Introduction

The periodic acid Schiff (PAS) stain assay is a histochemical stain used to identify carbohydrates, including glycogen, mucopolysaccharides, and basement membranes. It is a simple and inexpensive stain that is widely used in pathology laboratories to diagnose a variety of diseases and conditions, including leukemia.

When used on peripheral blood, the PAS stain can be used to identify leukemic cells that contain increased amounts of glycogen or mucopolysaccharides. This can be helpful in differentiating between different types of leukemia, such as acute myeloid leukemia and acute lymphoblastic leukemia. .

Principle of PAS stain

Periodic acid Schiff (PAS) stain is a method used to identify glycogen in tissues. PAS works by selectively oxidizing carbohydrate radicals, such as those found in glycols and related compounds, to produce dialdehydes. These dialdehydes react with Schiff’s reagent to produce a purple-magenta color. PAS stain is helpful in diagnosing acute lymphoblastic leukemia and some cases of erythroleukemia.

Method differs slightly according to the manufacturer’s protocol. 

Materials

  • Absolute methanol
  • Schiff’s reagent
  • Period acid 1% w/v with distilled water
  • Methyl green 4% with distilled water
  • Unstained peripheral blood smear slide

Method

  1. Fix slides in absolute methanol for 5 – 10 minutes. 
  2. Rinse the slide with slow running tap water for 1 minute. 
  3. Submerge in periodic acid for 10 minutes.
  4. Rinse the slide with slow running tap water. 
  5. Wipe the back of the slide and edges with Kim wipes. Be careful not to touch the smear. 
  6. Submerge in Schiff’s reagent for 20 minutes.
  7. Rinse the slide with slow running tap water for 5 minutes. 
  8. Counterstain with methyl green for 3 minutes. 
  9. Rinse the slide with slow running tap water. 
  10. Wipe the back of the slide and edges with Kim wipes. Be careful not to touch the smear. 
  11. Dry the slide using the hair dryer on the lowest speed or air dry in a tilted position.
  12. Mount the slide with Depex and cover the zone of morphology with a cover slip. 
  13. This slide is now ready for viewing. 

Interpretation

Bone marrow with B-ALL: PAS stain. Cell located upper-right to center contains crimson granules and fusion blocks, indicating B-ALL. "ALL PAS stain" by Animalculist is licensed under CC BY-SA 4.0.
Bone marrow with B-ALL: PAS stain. Cell located upper-right to center contains crimson granules and fusion blocks, indicating B-ALL. “ALL PAS stain” by Animalculist is licensed under CC BY-SA 4.0.

PAS stain is used to identify glycogen in tissues. PAS positive cells stain magenta (red) in the cytoplasm, while the nucleus stains green.

  • Neutrophils are a positive control for PAS staining. They show intense, confluent granular positivity.
  • In acute lymphoblastic leukemia, the lymphoblasts are stained block positivity.
  • Myeloblasts contain a few small PAS-positive granules.
  • Monocytes and their precursors show variable diffuse positivity.
  • The reaction in megakaryocytes and platelets is variable.
  • Erythroleukemia and erythroid precursors of some thalassemia are PAS positive.
  • Normal erythroid precursors and red cells are negative. 

References

  1. Bain BJ. A Practical Guide. 6th Edition (Wiley). 2022.
  2. Bain BJ, Bates I, Laffan MA. Dacie and Lewis Practical Haematology: Expert Consult: Online and Print 12th Edition (Elsevier). 2016.
  3. Carr JH. Clinical Hematology Atlas 6th Edition (Elsevier). 2021.

Related Diseases

ABO RhD Blood Grouping Tube Method

ABO RhD Blood Grouping Tube Method

Introduction The ABO and RhD blood groups are two of the most important systems for classifying human blood. They are determined by the presence or absence of specific antigens on the surface of red blood cells. The ABO Blood Group System The ABO blood group system is...

Glucose-6-Phosphate Dehydrogenase (G6PD) Fluorescent Spot Test 

Glucose-6-Phosphate Dehydrogenase (G6PD) Fluorescent Spot Test 

Introduction The G6PD fluorescent test is a rapid and reliable method for diagnosing G6PD deficiency. The test involves measuring the activity of G6PD in a sample of red blood cells. A low level of G6PD activity indicates a deficiency.  Glucose-6-phosphate...